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Why Do We Need to 

Disambiguate?

In enhancing metadata, one key step is 

match the extracted proper names to a 

knowledge base.

For each proper name (person, event, or 

location), there can be several matches in the 

knowledge base.

For example, if we happen to extract a 

person name “John Smith”…



Why is Disambiguation so 

Hard?

 The actual reference of the word is usually 

context-dependent.

 Let’s go to Oxford together!

 The context is ignored when matching to the 

knowledge base.

 It is exceedingly hard to “learn” the context by 

a computer program. 



What is the Goal?

We want an algorithm that is:

 Highly accurate.

 Resistant to noise.

 Efficient in time and memory.

 If all matching candidates in the knowledge base 

are false matches, the algorithm should detect 

and report this fact.



Our Approach

We avoid learning the context explicitly.

We take advantage of the implicit correlation 

(or compatibility) among named entities.

Example: Napoleon lost his last battle in 

Waterloo.



Big Picture

We quantify “compatibility” between groups of 

proper names, and then we choose a 

“realization” that maximizes this compatibility.



Factor Graph Model

 There are 2 types of nodes: variable nodes 

and function nodes.

 Each variable node can take a state among 

several choices.

 Each function node is connected to several 

variable node, and it computes the interaction 

of these nodes.



An Example of Factor Graph

Each circle represents a variable node, which can 

take value either +1 or -1.

Each square represents a function node, which 

computes the product of its neighbors.



A Realization of the Factor 

Graph
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Applying the Factor Graph 

Model

Each identified proper name will be a variable 

node, whose choice of states will be its 

possible matches in the knowledge base.

Function nodes will be added to compute the 

interactions between proper names.



An Example of Factor Graph

Napoleon Waterloo

f3 (interaction)
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Prior Distribution

Each variable node has a prior distribution over its 
possible states. For example, when no other 
information presents, “San Francisco” may refer to 
the city in CA with 99% probability, and 1% being 
something else.

The prior distribution is ignoring the interaction.

Essentially, the prior distribution can be represented 
by a function node connected only to one variable 
node.



MAP Estimate

Given a realization of variable nodes, each 

function node compute a score based on the 

states of variable nodes.

The total score (energy) of this realization will 

be the product of the scores of all function 

nodes.

We want to find the realization with maximum 

score, which is called the maximum a 

posteriori (MAP) estimate.



Back to the Napoleon Example…

Suppose Napoleon can be either the French Emperor or his son, 
with prior

f1(Nap I) = 0.99 f1(Nap II) = 0.01

Similarly, Waterloo can either be the Canadian city or the Belgian 
city, with

f2(W, Can) = 0.9 f2(W, Bel) = 0.1

The interaction is defined as

f3(Nap I, Waterloo Belgium) = 100 f3(other) = 1

Napoleon Waterloo

f3 (interaction)f1 (prior) f2  (prior)



Napoleon Example Continued

Now calculation shows the MAP estimate is

Napoleon = Napoleon I, and Waterloo = Waterloo, Belgium

Furthermore, the posterior distribution is

f1(Nap I) = 0.999 f1(Nap II) = 0.001

f2(W, Can) = 0.09 f2(W, Bel) = 0.91

Napoleon Waterloo

f3 (interaction)f1 (prior) f2  (prior)



Computing MAP Estimate

 In general, computing the exact MAP 

estimate of a factor graph is a hard problem, 

unless the structure of the graph is very 

special.

 Recent research shows that the belief 

propagation (BP) algorithm is very efficient in 

finding approximate MAP estimate.



Challenge of the Model

 What interactions do we compute?

 To get started, we can add a function node for 
each pair of variable node.

 How do we define the strength of an 
interaction?

 We can use the Wikipedia graph. Use the graph 
distance as a measure of closeness.

We have a large freedom when choosing 
these functions. Once they are chosen, the 
model is fixed.



Why is this Model Awesome?

 It captures the interaction of all proper names 

appeared in the text. Essentially it is 

computing the context implicitly.

 There is a large degree of freedom in defining 

the compatibility.

 The BP algorithm enables fast calculation of 

near-optimal MAP estimate.



Conclusion

 We have proposed a flexible framework for 

disambiguation of proper names.

 The framework is based on the idea of 

choosing compatible entities for the extracted 

names.

 Eventually it boils down to solving an 

optimization problem using cutting-edge 

algorithms.



What to Do Next?

 Implement this framework!

 Try various compatibility measures and study 

their performances.

 Test it on different collections and validate 

the results.


